- Contemporary messages sorted: [ by date ] [ by thread ] [ by subject ] [ by author ] [ by messages with attachments ]

From: Quentin Anciaux <allcolor.domain.name.hidden>

Date: Sun, 9 Nov 2008 02:59:15 +0100

Well if it was true a set of non related states (which I could define

as the states transition rule is "bigger" than the total information

content of each state) is consistent... what I think Brent is trying

to argue (hope I did understand :D-)... I do not believe in this, but

maybe I'm to naïve...

Regards,

Quentin

2008/11/9 A. Wolf <a.lupine.domain.name.hidden>:

*>
*

*> On Sat, Nov 8, 2008 at 8:41 PM, Quentin Anciaux <allcolor.domain.name.hidden> wrote:
*

*>>
*

*>> To infer means there is "a process" which permits to infer.. if there
*

*>> is none... then you can't simply infer something.
*

*>
*

*> The process itself arises naturally from the universe of sets
*

*> guaranteed by the axioms of set theory. For example, the Axiom of
*

*> Union says that the elements of the elements of a set form a set. You
*

*> can therefore infer that if the set { { { } }, { { { } } } } exists,
*

*> then the set { { }, { { } } } exists. By using the axioms alone,
*

*> you can prove and disprove everything in mathematics. The process of
*

*> inference comes from the axioms themselves and the undefinable
*

*> membership relation.
*

*>
*

*> This is elementary set theory...any basic course in set theory should
*

*> cover this.
*

*>
*

*> Anna
*

*>
*

*> >
*

*>
*

Date: Sun, 9 Nov 2008 02:59:15 +0100

Well if it was true a set of non related states (which I could define

as the states transition rule is "bigger" than the total information

content of each state) is consistent... what I think Brent is trying

to argue (hope I did understand :D-)... I do not believe in this, but

maybe I'm to naïve...

Regards,

Quentin

2008/11/9 A. Wolf <a.lupine.domain.name.hidden>:

-- All those moments will be lost in time, like tears in rain. --~--~---------~--~----~------------~-------~--~----~ You received this message because you are subscribed to the Google Groups "Everything List" group. To post to this group, send email to everything-list.domain.name.hidden To unsubscribe from this group, send email to everything-list+unsubscribe.domain.name.hidden For more options, visit this group at http://groups.google.com/group/everything-list?hl=en -~----------~----~----~----~------~----~------~--~---Received on Sat Nov 08 2008 - 20:59:21 PST

*
This archive was generated by hypermail 2.3.0
: Fri Feb 16 2018 - 13:20:15 PST
*