I take the view that physical existence is in some sense a 'part' of
mathematics. However physical properties by themselves aren't
mathematical properties. Which properties do we call 'physical'?
There appear to be three main classes of properties that we interpret
as 'physical': *spatial* properties, *topological* (or containment)
properties, and *functional* properties.
Perhaps one should say that physical properties are 'partial'
mathematics. Let me try to clarify what I mean by analogy - take the
prime factorization of a non-prime number. The primes are in some
sense 'components' (or building blocks) of the non-primes. By analogy
with this, one could say that physical properties are *metaphysical
components* of mathematical entities. Physical properties by
themselves are not mathematical properties, but in combination with
other (non-physical) metaphysical entities, you build mathematical
entities. Or another analogy might be that physical properties are in
some sense 'the metaphysical square root' of mathematics.
--~--~---------~--~----~------------~-------~--~----~
You received this message because you are subscribed to the Google Groups "Everything List" group.
To post to this group, send email to everything-list.domain.name.hidden
To unsubscribe from this group, send email to everything-list-unsubscribe.domain.name.hidden
For more options, visit this group at
http://groups.google.com/group/everything-list
-~----------~----~----~----~------~----~------~--~---
Received on Thu Mar 30 2006 - 05:09:30 PST