Hi (again) Brent,
So Brent you were right, if I understood you correctly, in quantum
logic the negation can be interpreted as an orthogonality relations
classifying alternative results of an experiment. The vectors of the
base corresponds to the observables under scrutiny.
Le 09-déc.-05, à 18:06, Bruno Marchal a écrit :
> Hi Brent,
<snip>
>
>
>
>> What is the relation of accessibility in the p,q,r world(s)? Is it
>> negation?
>
>
> Err... I guess you are talking about the reflexive and symmetric
> multiverse (the proximity spaces) and their antimultiverse which are
> the antireflexive but also symmetric (see why?) multiverse (the
> orthogonality spaces).
<snip>
I recall for the others that a multiverse (W,R) is said to be symmetric
if for all worlds x y in W, xRy entails yRx.
It is said reflexive if for all worlds x in W we have xRx, (all worlds
can acces themselves)
and antireflexive if for all worlds x in W we have not xRx (no worlds
can access themselves)
In french: the multiverse (W,R) is symmetric if it is build in a such
ways that each time you can travel from some world in W,
Alpha-Centaurus say, to some world in W, Beta-Earth say, by using the
travel line R (the accessibility relation), then you can go back from
Beta-Earth to Alpha-Centaurus by R too.
In set theory: R is symmetrical if each time (a, b) belongs to R, then
(b, a) belongs to R too. This is because in set language, binary
relations are defined by their set of couples.
To say "Alice loves Lewis", a set theorist would say (Alice, Lewis)
belongs to love.
With drawings: <not yet available :( >
Hope this can help those who perhaps lack some training in math.
Bruno
http://iridia.ulb.ac.be/~marchal/
Received on Fri Dec 09 2005 - 13:16:26 PST