Re: Another tedious hypothetical

From: rmiller <rmiller.domain.name.hidden>
Date: Wed, 08 Jun 2005 23:38:47 -0500

At 11:08 PM 6/8/2005, Jesse Mazer wrote:
(snip)

>You should instead calculate the probability that a story would contain
>*any* combination of meaningful words associated with the Manhattan
>project. This is exactly analogous to the fact that in my example, you
>should have been calculating the probability that *any* combination of
>words from the list of 100 would appear in a book title, not the
>probability that the particular word combination "sun", "also", and
>"rises" would appear.

RM: Are you suggesting that a fair analysis would be to wait until Google
Print has the requisite number of books available, download the text, then
sic Mathematica onto them to look for word associations linked with a
target? What limits would you place on this (if any?) Or would this be a
useless (though certainly do-able) exercise?


>(snip)



>. . . Would it be fair to test for ESP. . .

We're not testing for ESP--only out-of-causal-order gestalts in popular
literature that are associated with similar gestalts in literature (or
national) events taking place at some future time. There might be a
fine--though humdrum and unpredictable---explanation for this sort of
business. Or it might be explained by some of the more offbeat analytical
procedures---say, involving exponential or Poisson probabilities
as applied to delayed choice events. Who knows? While I wouldn't rule it
out, I personally don't think the eventual answer--if there is one---will
involve anything as humdrum as ESP. And if this sort of thing is to be
expected in the course of publishing events, then there should be a
mathematical formula that can predict it, given the input variables (which
is why I think exponential or Poisson might be involved.)


>>>Again, my concern is that scientists are too willing to prejudge
>>>something before diving into it.
>
>OK, but this is a tangent that has nothing to do with the issue I raised
>in my posts about the wrongness of selecting the target (whose probability
>of guessing you want to calculate) using hindsight knowledge of what was
>actually guessed.

As a former fed, I would wholeheartedly disagree. There is a grand
tradition of avoiding analysis by whatever means are available, including
"hindsight knowledge" invalidating the correlation. In other words, you
shouldn't ever mine for data. Thankfully, that admonition is routinely
ignored by many biostatisticians.

> If you don't want to discuss this specific issue then say so--I am not
> really interested in discussing the larger issue of what the "correct"
> way to calculate the probability of the Heinlein coincidences would be, I
> only wanted to talk about this specific way in which *your* method is
> obviously wrong.

Thank you. (Finally!!!) Whew! That sentence has validated the entire
horrid exercise. May I quote you???

>Like I said before, any method that could be invented by someone who
>didn't know in advance about Heinlein's story would avoid this particular
>mistake. . .

. . .another money quote. . .

>*although it might suffer from other flaws*.


This one too!!!

Regards and Thanks Again!

Rich M.
Received on Thu Jun 09 2005 - 00:44:15 PDT

This archive was generated by hypermail 2.3.0 : Fri Feb 16 2018 - 13:20:10 PST