Re: Questions about MWI and mathematical formalism
 
This is a slight expansion on my previous post under the "simulation" thread.
1) The first step is to examine the act of definition. In this case the 
definition of a "Nothing".  Any definition process simultaneously defines 
two entities.  The definition is a boundary between an entity of interest 
and the leftover building blocks.  In the special case of a "Nothing" the 
left over is an "Everything".  Thus the two are dependent partners.  Since 
the "Everything" contains all information the definition pair must itself 
specify all information and can be represented by a normal real.
2)  A "Nothing" has an interesting logical problem: It can not answer any 
meaningful question about itself.  Assuming there is a relevant meaningful 
question a "Nothing" would be incomplete.  An inescapable meaningful 
question is its own stability.  This is not only meaningful it is 
impossible to avoid answering.
3) To attempt to answer this question a "Nothing" randomly and 
spontaneously "decays" towards an "Everything" to resolve its 
incompleteness.  But this is not sustainable since an "Everything" is not 
independent of a "Nothing".  Therefore a "Nothing" rebounds from the decay.
4) Thus the definition or boundary between the "Nothing" and "Everything" 
pair is randomly dynamic equivalent to a random sequence of normal reals.
5)  A universal computer is a good way to model a selector of a random 
sequence of normal reals.
6) Notice that the "Everything" also has a logical problem.  Looking at the 
same meaningful question of its own stability it contains all possible 
answers.  Just one would constitute a selection i.e. net internal 
information which is not an aspect of the "Everything".   Thus the 
"Everything" is inconsistent.
7) Thus the entire system while being - apparently - the only game in town 
is also both incomplete and inconsistent.
Hal
Received on Mon May 03 2004 - 15:05:21 PDT
This archive was generated by hypermail 2.3.0
: Fri Feb 16 2018 - 13:20:09 PST