Re: Theory of Everything based on E8 by Garrett Lisi

From: John Mikes <>
Date: Thu, 29 Nov 2007 16:20:28 -0500

Marc, please, allow me to write in plain language - not using those
fancy words of these threads.
Some time ago when the discussion was in commonsensically more
understandable vocabulary, I questioned something similar
to GŁnther, as pertaining to "numbers" - the alleged generators of
'everything' (physical, quality, ideation, process, you name it).
As Bruno then said: the positive integers do that - if applied in
sufficiently long expressions. (please, Bruno, correct this to a
bottom-low simplification) - I did not follow that and was promised
some more explanatory text in "not so technical" language. The
discussion over the past some weeks is even "more technical" for me.
Is not the distinction relevant what I hold, that there are two kinds
of 'number'-usage: the (pure, theoretical Math and the in sciences -
(quantity related) - "applied math" - that uses the formalism (the
results, even logics) of 'Math' to exercise 'math'? (Cap vs lower m)

Geometry seems to be in between(????) and symmetry can be both, I think.

I am no physicist AND no mathematician, (not even a logician), so I
pretend to keep an objective eye on things in which I am not
prejudiced by knowledge. (<G>).

John M

On Nov 27, 2007 11:40 PM, <> wrote:
> On Nov 28, 1:18 am, GŁnther Greindl <>
> wrote:
> > Dear Marc,
> >
> > > Physics deals with symmetries, forces and fields.
> > > Mathematics deals with data types, relations and sets/categories.
> >
> > I'm no physicist, so please correct me but IMHO:
> >
> > Symmetries = relations
> > Forces - could they not be seen as certain invariances, thus also
> > relating to symmetries?
> >
> > Fields - the aggregate of forces on all spacetime "points" - do not see
> > why this should not be mathematical relation?
> >
> > > The mathemtical entities are informational. The physical properties
> > > are geometric. Geometric properties cannot be derived from
> > > informational properties.
> >
> > Why not? Do you have a counterexample?
> >
> > Regards,
> > GŁnther
> >
> Don't get me wrong. I don't doubt that all physical things can be
> *described* by mathematics. But this alone does not establish that
> physical things *are* mathematical. As I understand it, for the
> examples you've given, what happens is that based on emprical
> observation, certain primatives of geometry and symmetry are *attached
> to* (connected with) mathematical relations, numbers etc which
> successfully *describe/predict* these physical properties. But it
> does not follow from this, that the mathematical relations/numbers
> *are* the geometric properties/symmetrics.
> In order to show that the physical properties *are* the mathematical
> properties (and not just described by or connected to the physical
> properties), it has to be shown how geometric/physical properties
> emerge from/are logically derived from sets/categories/numbers alone.

You received this message because you are subscribed to the Google Groups "Everything List" group.
To post to this group, send email to
To unsubscribe from this group, send email to
For more options, visit this group at
Received on Thu Nov 29 2007 - 16:20:45 PST

This archive was generated by hypermail 2.3.0 : Fri Feb 16 2018 - 13:20:14 PST