- Contemporary messages sorted: [ by date ] [ by thread ] [ by subject ] [ by author ] [ by messages with attachments ]

From: Hal Finney <hal.domain.name.hidden>

Date: Thu, 29 Jan 1998 11:31:04 -0800

Maybe we can find some common ground to start with.

The central idea of the MW and similar interpretations is that wave

function collapse does not occur. Instead, the wave function is universal

and evolves in time strictly by means of the Schrodinger equation.

This is the mathematical theory which supposedly describes our universe.

Now we have to try to understand how or whether this theory actually

could apply to our universe. This gets into the issue of mapping, which

I talked about yesterday. Maybe in theory the mathematical formula is

enough and whatever evolves from it gets to experience it from the inside.

But in practice, to try to judge whether a theory matches our universe,

we need to have a way to map between its predictions and what we see.

With MW it is especially difficult since we observe what seems to be wave

function collapse during measurement interactions. Therefore the thrust

of the discussion is how to reconcile the appearance of wave function

collapse with the (theoretical) reality that it does not collapse. The

focus is on measurement-like interactions and how it could be that an

observer would seem to see collapse.

The actual definition of what constitutes a measurement is not looked

at too closely in this analysis. Instead, as with the conventional

interpretation, we assume that we have classical-like measurements and

explore how to relate those to the reality of what is going on with the

wave function. That leads naturally to the notion of decoherent branches

of the wave function, and hence the appearance of "many worlds".

It sounds like what you want to do is to explore the issues of what

constitutes a measurement, and when decoherence occurs. This would then

lead to a more detailed understanding of when worlds can be said to split.

This topic is discussed in conventional measurement theory, from a

different point of view. There it is shown that as a quantum phenomenon

undergoes amplification to large numbers of particles, the nature of

the wave function changes. It changes from a superposition of states

to a mixture of decoherent states. This can be derived purely with

the continuous evolution of the wave function, without introducing any

notions of wave function collapse.

In the context of the MWI, once you have a mixture of decoherent states,

we can interpret this as being different branches of the wave function

which no longer will interfere with each other, thus giving the effect

of "many worlds".

Hal

Received on Thu Jan 29 1998 - 11:47:44 PST

Date: Thu, 29 Jan 1998 11:31:04 -0800

Maybe we can find some common ground to start with.

The central idea of the MW and similar interpretations is that wave

function collapse does not occur. Instead, the wave function is universal

and evolves in time strictly by means of the Schrodinger equation.

This is the mathematical theory which supposedly describes our universe.

Now we have to try to understand how or whether this theory actually

could apply to our universe. This gets into the issue of mapping, which

I talked about yesterday. Maybe in theory the mathematical formula is

enough and whatever evolves from it gets to experience it from the inside.

But in practice, to try to judge whether a theory matches our universe,

we need to have a way to map between its predictions and what we see.

With MW it is especially difficult since we observe what seems to be wave

function collapse during measurement interactions. Therefore the thrust

of the discussion is how to reconcile the appearance of wave function

collapse with the (theoretical) reality that it does not collapse. The

focus is on measurement-like interactions and how it could be that an

observer would seem to see collapse.

The actual definition of what constitutes a measurement is not looked

at too closely in this analysis. Instead, as with the conventional

interpretation, we assume that we have classical-like measurements and

explore how to relate those to the reality of what is going on with the

wave function. That leads naturally to the notion of decoherent branches

of the wave function, and hence the appearance of "many worlds".

It sounds like what you want to do is to explore the issues of what

constitutes a measurement, and when decoherence occurs. This would then

lead to a more detailed understanding of when worlds can be said to split.

This topic is discussed in conventional measurement theory, from a

different point of view. There it is shown that as a quantum phenomenon

undergoes amplification to large numbers of particles, the nature of

the wave function changes. It changes from a superposition of states

to a mixture of decoherent states. This can be derived purely with

the continuous evolution of the wave function, without introducing any

notions of wave function collapse.

In the context of the MWI, once you have a mixture of decoherent states,

we can interpret this as being different branches of the wave function

which no longer will interfere with each other, thus giving the effect

of "many worlds".

Hal

Received on Thu Jan 29 1998 - 11:47:44 PST

*
This archive was generated by hypermail 2.3.0
: Fri Feb 16 2018 - 13:20:06 PST
*